Up 太陽の方角と南中の方角のなす角度 作成: 2020-09-29
更新: 2020-09-29


    公転角度τ,緯度a,経度bでは,つぎのベクトル \( {\bf d} = ( d_x, d_y, d_y ) \) が太陽方角ベクトルになる: \[ \begin{align} d_x &= - \tau_s (a_c)^2 (b_c)^2 \\ & + \tau_c n_c (a_c)^2 b_s b_c \\ & - \tau_c n_s a_s a_c b_c + \tau_s \\ \ \\ d_y &= \tau_c (n_c)^2 (a_c)^2 (b_s)^2 \\ &- \tau_s n_c (a_c)^2 b_s b_c \\ & - 2 \tau_c n_s n_c a_s a_c b_s \\ &+ \tau_s n_s a_s a_c b_c \\ &+ \tau_c (n_s)^2 (a_s)^2 - \tau_c \\ \ \\ d_z &= \tau_c n_s n_c a_c^2 b_s^2 \\ & \quad - \tau_s n_s a_c^2 b_s b_c \\ & \quad + \tau_c ( n_c^2 - n_s^2 ) a_s a_c b_s \\ & \quad - \tau_s n_c a_s a_c b_c \\ & \quad - \tau_c n_s n_c a_s^2 \end{align] \\ \ \\ \] そして,つぎのベクトル \( ( d0_x, d0_y, d0_y ) \) が太陽方角ベクトル: \[ \begin{align} d0_x &= - \frac { n_s a_s a_c \tau_s \tau_c } {\sqrt{ 1 - (n_s)^2 ( \tau_c )^2 } } + a_s^2 \tau_s \\ \ \\ d0_y &= - ( (n_s)^2 (a_c)^2 + (n_c)^2 (a_s)^2 ) \tau_c \\ & \quad + \frac {( (n_c)^2 (\tau_c)^2 + ( 1 - (n_s)^2 (\tau_c)^2 ) ) n_s a_s a_c } {\sqrt{ 1 - (n_s)^2 ( \tau_c )^2 } } \\ \ \\ d0_z &= n_s n_c ( (a_c)^2 - (a_s)^2 ) \tau_c \\ & \quad + \frac { ( (n_s)^2 (\tau_c)^2 - (1 - (n_s)^2 (\tau_c)^2 ) ) n_c a_s a_c } { \sqrt{1 - (n_s)^2 ( \tau_c )^2} } \end{align} \] この二つのなす角度θは,つぎの式に表される: \[ cos(\theta\) = \frac{ ( d_x, d_y, d_z ) \cdot ( d0_x, d0_y, d0_z )}{ |( d_x, d_y, d_z )| \ | ( d0_x, d0_y, d0_z ) | } \] 以下,これを計算する。