Processing math: 1%
Up TeX 作成: 2017-10-20
更新: 2023-10-11


  • TeX 式の書き方
      teststyle  : 式を \( \)  で挟む
      	
      displaystyle: 式を \[ \] で挟む

  • phtml 文書の中では,<? ?> から外れて書かないと,改行 \\ などが効かない。

  • は, の中で1回しか使えない。

    teststyle displaystyle TeX 式
    a1=b1+c1a2=b2+c2d2+e2
    \begin{align}
    a_1&=b_1+c_1 \\
    a_2&=b_2+c_2-d_2+e_2
    \end{align}
    
    a1=b1+c1a2=b2+c2d2+e2
    \begin{align*}
    a_1&=b_1+c_1 \\
    a_2&=b_2+c_2-d_2+e_2
    \end{align*}
    
    a11=b11a12=b12a21=b21a22=b12+c22
    \begin{align*}
    a_{11} &=b_{11}
     & a_{12}&=b_{12} \\
    a_{21} &=b_{21}
     & a_{22}&=b_{12}+c_{22} 
    \end{align*}
    
    f(b)=f(a)+ba1!f(a)+(ba)22!f
    \begin{align}
    f(b)&=f(a)+\frac {b-a}{1!}f'(a)\\
    &\quad +\frac {(b-a)^2}{2!}f''(a)\\
    &\qquad +\frac {(b-a)^3}{3!}f''(a)\\
    &\qquad\quad +\frac {(b-a)^4}{4!}f''(a)\\
    &\qquad\qquad \cdots 
    +\frac {(b-a)^n}{n!}f^{(n)}(a)+R_n(a)
    \end{align}
    
    x^2 + y^2 - z^2 =2 x^2 + y^2 - z^2 =2 x^2 + y^2 - z^2 =2
    x=\sqrt{2} x=\sqrt{2} x=\sqrt{2}
    e^{i\pi} = -1 e^{i\pi} = -1 e^{i\pi} = -1
    x = \frac{a}{b} x = \frac{a}{b} x = \frac{a}{b}
    \overrightarrow{AB} \overrightarrow{AB} \overrightarrow{AB}
    \frac{-b\pm\sqrt{b^2-4ac}}{2a} \frac{-b\pm\sqrt{b^2-4ac}}{2a} \frac{-b\pm\sqrt{b^2-4ac}}{2a}
    F \propto \frac{q_1\ q_2}{r^2} \vec{F} = \frac{1}{4\pi \varepsilon_0} \frac{q_1\ q_2}{|\vec{r}|^2} \frac{\vec{r}}{|\vec{r}|} F \propto \frac{q_1\ q_2}{r^2} \vec{F} = \frac{1}{4\pi \varepsilon_0} \frac{q_1\ q_2}{|\vec{r}|^2} \frac{\vec{r}}{|\vec{r}|}
    \F \propto \frac{q_1\ q_2}{r^2}

    \vec{F} =
    \frac{1}{4\pi \varepsilon_0}
    \frac{q_1\ q_2}{|\vec{r}|^2}
    \frac{\vec{r}}{|\vec{r}|}
    N(m,\sigma^{2})=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^{2}}} N(m,\sigma^{2})=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^{2}}}
    N(m,\sigma^{2})=
    \frac{1}{\sigma\sqrt{2\pi}}
    e^{-\frac{(x-m)^2}{2\sigma^{2}}}
    f(x)=\int_0^{x}g(t)\,dt f(x)=\int_0^{x}g(t)\,dt f(x)=\int_0^{x}g(t)\,dt
    \iota(f,z_{0})=\frac{1}{2 \pi i}\oint\frac{dz}{z_{0}-f(z)} \iota(f,z_{0})=\frac{1}{2 \pi i}\oint\frac{dz}{z_{0}-f(z)}
    \iota(f,z_{0})=
    \frac{1}{2 \pi i}
    \oint\frac{dz}{z_{0}-f(z)}
    \left( \begin{array}{c} x^1 \\ \vdots \\ x^n \\ \end{array} \right) \qquad \begin{array}{c} t \\ \\ \\ \end{array} \left( \begin{array}{c} x^1 \\ x^2 \\ x^3 \\ \end{array} \right)
    \left(
    \begin{array}{c}
    x^1 \\
    \vdots \\
    x^n \\
    \end{array}
    \right)
    
    \begin{array}{c}
    t \\
     \\
     \\
    \end{array}
    
    \left(
    \begin{array}{c}
    x^1 \\
    x^2 \\
    x^3 \\
    \end{array}
    \right)
    
    \left( \begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ & \cdots & \\ a_{n1} & \cdots & a_{nn} \\ \end{array} \right) \\  \\ \left( \begin{array}{ccc} a^1_1 & \cdots & a^1_n \\ & \cdots & \\ a^n_1 & \cdots & a^n_n \\ \end{array} \right) \\  \\ \left( \begin{array}{ccc} a^1_1 & \cdots & a^n_1 \\ & \cdots & \\ a^1_n & \cdots & a^n_n \\ \end{array} \right)
    \left(
    \begin{array}{ccc}
    a_{11} & \cdots & a_{1n} \\
    & \cdots & \\
    a_{n1} & \cdots & a_{nn} \\
    \end{array}
    \right)
    
    \left(
    \begin{array}{ccc}
    a^1_1 & \cdots & a^1_n \\
    & \cdots & \\
    a^n_1 & \cdots & a^n_n \\
    \end{array}
    \right)
    
    \left(
    \begin{array}{ccc}
    a^1_1 & \cdots & a^n_1 \\
    & \cdots & \\
    a^1_n & \cdots & a^n_n \\
    \end{array}
    \right)
    
    A=\left( \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \right)
    A=\left(
    \begin{array}{ccc}
    a_{11} & a_{12} & a_{13} \\
    a_{21} & a_{22} & a_{23} \\
    a_{31} & a_{32} & a_{33} \\
    \end{array}
    \right)
    \left( \begin{array}{cccc} a_1 & 0 & \cdots &\\ 0 & a_2 & 0 & \cdots \\ & \cdots & \ddots & \cdots \\ & \cdots & 0 & a_n \\ \end{array} \right)
    \left(
    \begin{array}{cccc}
    a_1 & 0 & \cdots &\\
    0 & a_2 & 0 & \cdots \\
     & \cdots & \ddots & \cdots \\
     & \cdots & 0 & a_n \\
    \end{array}
    \right)
    
    \begin{align} \begin{array}{c c} & \begin{array} {@{} c c c c @{}} v_1 & v_2 & v_3 & v_4 \end{array} \\ \begin{array}{c} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \\ e_6 \end{array} \hspace{-1em} & \left( \begin{array}{@{} c c c c @{}} 11 & 12 & 13 & 14 \\ 21 & 22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \\ 51 & 52 & 53 & 54 \\ 61 & 62 & 63 & 64 \\ \end{array} \right) \\ \mbox{} % Blank line to match column names so as to align the = vertically \end{array} \\[-12pt] % Correction for blank line \end{align}
    \begin{align}
    
    	\begin{array}{c c}
    		& \begin{array} {@{} c c c c @{}}
    			v_1 & v_2 & v_3 & v_4
    		\end{array} \\
    
    		\begin{array}{c}
    			e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \\ e_6
    		\end{array}
    		\hspace{-1em} &
    		\left(
    			\begin{array}{@{} c c c c @{}}
    				11 & 12 & 13 & 14 \\
    				21 & 22 & 23 & 24 \\
    				31 & 32 & 33 & 34 \\
    				41 & 42 & 43 & 44 \\
    				51 & 52 & 53 & 54 \\
    				61 & 62 & 63 & 64 \\
    			\end{array}
    		\right) \\
    		\mbox{} % Blank line to match column names so as to align the = vertically
    	\end{array} \\[-12pt] % Correction for blank line
    \end{align}
    
    \int_S \vec{F}(\vec{x}) \cdot d\vec{S} = \begin{cases} 4 \pi & (\vec{a} \in D) \\ 0 & (\vec{a} \notin D) \end{cases} \int_S \vec{F}(\vec{x}) \cdot d\vec{S} = \begin{cases} 4 \pi & (\vec{a} \in D) \\ 0 & (\vec{a} \notin D) \end{cases}
    \int_S \vec{F}(\vec{x}) 
    \cdot d\vec{S} = 
    \begin{cases}
    4 \pi & (\vec{a} \in D) \\
    0  & (\vec{a} \notin D) 
    \end{cases}


    微積分記号
    \sum_{i=0}^n x_i \sum_{i=0}^n x_i
    \prod \prod
    \lim_{n \to \infty} \lim_{n \to \infty}
    dx dx
    dt dt
    \partial^2 x \partial^2 x
    \partial x^2 \partial x^2
    \Delta \Delta
    \nabla^2 \nabla^2
    \int \int
    \int_a^b \int_a^b
    \oint \oint
    f'' f''
    f^{(k)} f^{(k)}
     
    \hat{x} \hat{x} \check{x} \check{x}
    \breve{x} \breve{x} \acute{x} \acute{x}
    \grave{x} \grave{x} \tilde{x} \tilde{x}
    \bar{x} \bar{x} \vec{x} \vec{x}
    \dot{x} \dot{x} \ddot{x} \ddot{x}
      
    \overline{x + y} \overline{x + y}
    \underline{x + y} \underline{x + y}
    \newcommand{\overarc}[1]{\stackrel{\Large\mbox{$\frown$}}{#1}} \\ \overarc{P_1 P_2} \newcommand{\overarc}[1]{\stackrel{\Large\mbox{$\frown$}}{#1}}
    \overarc{P_1 P_2}
    \widehat{xyz} \widehat{xyz}
    \widetilde{xyz} \widetilde{xyz}
    \overbrace{x + y} \overbrace{x + y}
    \underbrace{x + y} \underbrace{x + y}
    \overbrace{a + \cdots + z}^{26} \overbrace{a + \cdots + z}^{26}
    \underbrace{a + \cdots + z}_{26} \underbrace{a + \cdots + z}_{26}
    \overrightarrow{AB} \overrightarrow{AB}
    \overleftarrow{AB} \overleftarrow{AB}


  • スペース
    \, a \, b
    a \,\,\,\,\, b
    a \, b
    a \,\,\,\,\, b
    \スペース a \ b
    a \ \ \ \ \ b
    a \ b
    a \ \ \ \ \ b
    ~ a ~ b
    a ~~~~~ b
    a ~ b
    a ~~~~~ b
    \hspace{長さ} \hspace{5pt} a \hspace{5pt} b

  • 書体
    {\rm L } \rm L ローマン体 (標準)
    {\bf L } \bf L ボールド体 (太字)
    {\it L } \it L イタリック体 (強調)
    {\pmb L } \pmb L ボールドイタリック体
    {\boldsymbol L } \boldsymbol L ボールドシンボル
    {\sf L } \sf L サンセリフ体
    {\mathcal L } \mathcal L 筆記体


  • 各種記号
    対象記号
    \ \mathbb{N} \mathbb{N}
    \ \mathbb{Z} \mathbb{Z}
    \ \mathbb{Q} \mathbb{Q}
    \ \mathbb{R} \mathbb{R}
    \ \mathbb{C} \mathbb{C}
    \ \mathbb{F} \mathbb{F}
    \ \infty \infty

    二項関係
    \ne \ne
    \le \le
    \ge \ge
    \leqq \leqq
    \geqq \geqq
    \sim \sim
    \approx \approx
    \simeq \simeq
    \cong \cong
    \equiv \equiv
    \in \in
    \ni \ni
    \notin \notin
    \subset \subset
    \supset \supset
    \propto \propto
    \perp \perp

    論理記号
    \lnot \lnot
    \land \land
    \lor \lor
    \models \models
    \to \to
    \Rightarrow \Rightarrow
    \Leftrightarrow \Leftrightarrow
    \equiv \equiv
    \forall \forall
    \exists \exists
      矢印  ( 矢印 )
    \leftarrow \leftarrow
    \rightarrow \rightarrow
    \leftrightarrow \leftrightarrow
    \uparrow \uparrow
    \downarrow \downarrow
    \updownarrow \updownarrow
    \Leftarrow \Leftarrow
    \Rightarrow \Rightarrow
    \Leftrightarrow \Leftrightarrow
    \Uparrow \Uparrow
    \Downarrow \Downarrow
    \Updownarrow \Updownarrow
    \longleftarrow \longleftarrow
    \longrightarrow \longrightarrow
    \longleftrightarrow \longleftrightarrow
    \Longleftarrow \Longleftarrow
    \Longrightarrow \Longrightarrow
    \Longleftrightarrow \Longleftrightarrow
    \longmapsto \longmapsto

    ドット
    \ \cdot \cdot
    \ \cdots \cdots
    \ \ldots \ldots
    \ \vdots \vdots
    \ \ddots \ddots

    括弧
    \ \langle \ \ \rangle \langle \rangle }
    \ ( \ \ ) ( )
    \ \bigl( \ \ \bigr) \bigl( \bigr)
    \ \bigl( \ \ \bigr) \bigl( \bigr)
    \ \Bigl( \ \ \Bigr) \Bigl( \Bigr)
    \ \biggl( \ \ \biggr) \biggl( \biggr)
    \ \Biggl( \ \ \Biggr) \Biggl( \Biggr)
    \ \{ \ \ \} \{ \}
    \ \bigl\{ \ \ \bigr\} \bigl\{ \bigr\}
    \ \Bigl\{ \ \ \Bigr\} \Bigl\{ \Bigr\}
    \ \biggl\{ \ \ \biggr\} \biggl\{ \biggr\}
    \ \Biggl\{ \ \ \Biggr\} \Biggl\{ \Biggr\}
    \ [ \ \ ] [ ]
    \ \bigl[ \ \ \bigr] \bigl[ \bigr]
    \ \Bigl[ \ \ \Bigr] \Bigl[ \Bigr]
    \ \biggl[ \ \ \biggr] \biggl[ \biggr]
    \ \Biggl[ \ \ \Biggr] \Biggl[ \Biggr]
      二項演算
    \ \pm \pm
    \ \mp \mp
    \ \times \times
    \ \div \div
    \ \ast \ast
    \ \circ \circ
    \ \bullet \bullet
    \ \cdot \cdot
    \ \cap \cap
    \ \bigcap \bigcap
    \ \cup \cup
    \ \bigcup \bigcup
    \ \vee \vee
    \ \wedge \wedge
    \ \bigwedge \bigwedge
    \ \oplus \oplus
    \ \bigoplus \bigoplus
    \ \otimes \otimes
    \ \bigotimes \bigotimes
    \ \triangle \triangle
    \ \bigtriangleup \bigtriangleup
    \ \bigtriangledown \bigtriangledown
    \ \square \square
    \ \ddagger \ddagger

    ギリシャ文字
    A A \alpha \alpha
    B B \beta \beta
    \Gamma \Gamma \gamma \gamma
    \Delta \Delta \delta \delta
    E E \epsilon \epsilon \varepsilon \varepsilon
    Z Z \zeta \zeta
    H H \eta \eta
    \Theta \Theta \theta \theta \vartheta \vartheta
    I I \iota \iota
    K K \kappa \kappa
    \Lambda \Lambda \lambda \lambda
    M M \mu \mu
    N N \nu \nu
    \Xi \Xi \xi \xi
    O O o o
    \Pi \Pi \pi \pi \varpi \varpi
    P P \rho \rho \varrho \varrho
    \Sigma \Sigma \sigma \sigma \varsigma \varsigma
    T T \tau \tau
    \Upsilon \Upsilon \upsilon \upsilon
    \Phi \Phi \phi \phi \varphi \varphi
    X X \chi \chi
    \Psi \Psi \psi \psi
    \Omega \Omega \omega \omega


    \mathscr{·}
    \mathfrak{A} \mathfrak{a}
    \mathfrak{B} \mathfrak{b}
    \mathfrak{C} \mathfrak{c}
    \mathfrak{D} \mathfrak{d}
    \mathfrak{E} \mathfrak{e}
    \mathfrak{F} \mathfrak{f}
    \mathfrak{G} \mathfrak{g}
    \mathfrak{H} \mathfrak{h}
    \mathfrak{I} \mathfrak{i}
    \mathfrak{J} \mathfrak{j}
    \mathfrak{K} \mathfrak{k}
    \mathfrak{L} \mathfrak{l}
    \mathfrak{M} \mathfrak{m}
    \mathfrak{N} \mathfrak{n}
    \mathfrak{O} \mathfrak{o}
    \mathfrak{P} \mathfrak{p}
    \mathfrak{Q} \mathfrak{q}
    \mathfrak{R} \mathfrak{r}
    \mathfrak{S} \mathfrak{s}
    \mathfrak{T} \mathfrak{t}
    \mathfrak{U} \mathfrak{u}
    \mathfrak{V} \mathfrak{v}
    \mathfrak{W} \mathfrak{w}
    \mathfrak{X} \mathfrak{x}
    \mathfrak{Y} \mathfrak{y}
    \mathfrak{Z} \mathfrak{z}
    \mathscr{·}
    \mathscr{A}
    \mathscr{B}
    \mathscr{C}
    \mathscr{D}
    \mathscr{E}
    \mathscr{F}
    \mathscr{G}
    \mathscr{H}
    \mathscr{I}
    \mathscr{J}
    \mathscr{K}
    \mathscr{L}
    \mathscr{M}
    \mathscr{N}
    \mathscr{O}
    \mathscr{P}
    \mathscr{Q}
    \mathscr{R}
    \mathscr{S}
    \mathscr{T}
    \mathscr{U}
    \mathscr{V}
    \mathscr{W}
    \mathscr{X}
    \mathscr{Y}
    \mathscr{Z}
    \mathcal{·}
    \mathcal{A}
    \mathcal{B}
    \mathcal{C}
    \mathcal{D}
    \mathcal{E}
    \mathcal{F}
    \mathcal{G}
    \mathcal{H}
    \mathcal{I}
    \mathcal{J}
    \mathcal{K}
    \mathcal{L}
    \mathcal{M}
    \mathcal{N}
    \mathcal{O}
    \mathcal{P}
    \mathcal{Q}
    \mathcal{R}
    \mathcal{S}
    \mathcal{T}
    \mathcal{U}
    \mathcal{V}
    \mathcal{W}
    \mathcal{X}
    \mathcal{Y}
    \mathcal{Z}